Urol Res (1998) 26:111–116 © Springer-Verlag 1998

### ORIGINAL PAPER

Alan Paul · Fouad Habib

# Low-affinity nerve growth factor receptors (p75<sup>LNGFR</sup>) in human prostate tissue: stromal localisation

Received: 5 March 1997 / Accepted: 19 September 1997

**Abstract**  $\beta$ -Nerve growth factor ( $\beta$ -NGF) acts on highand low-affinity receptors to effect sympathetic innervation. It is produced in the human prostate. This study aimed to demonstrate the presence of  $\beta$ -NGF receptors and the distribution of p75 receptor protein in the human prostate. Radioligand binding assays were performed using microsomal preparations from benign prostatic hypertrophy (BPH) tissues but no specific binding of  $\beta$ -NGF was demonstrated (n = 20). Furthermore, BPH and prostate cancer tissues were stained immunohistochemically for p75<sup>LNGFR</sup>. Immunohistochemistry localised p75<sup>LNGFR</sup> to tiny areas of prostate stroma postulated to be sympathetic nerves (BPH, n=15; prostate adenocarcinoma, n=15). Our results suggest that β-NGF in the human prostate acts on stromal elements which, most likely, represent prostatic nerves. β-NGF may be an epithelial-stromal mediator of sympathetic nerve growth in the human prostate.

**Key words** Benign prostatic hypertrophy · Prostate cancer · Nerve growth factor receptors

#### Introduction

The protein hormone  $\beta$ -nerve growth factor ( $\beta$ -NGF) stimulates the growth and maintenance of sympathetic and some sensory neurites [8]. In neonates the administration of anti-NGF sera leads to deficient sympathetic innervation, while in adults the density of sympathetic innervation correlates with the tissue NGF

A. Paul (⊠) Stepping Hill Urology, Stepping Hill Hospital, Stockport SK2 7JE, UK

F. Habib Department of Surgery/Urology, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, Scotland, UK concentration [23]. NGF is also a chemoattractant for sympathetic neurones [15]. By producing NGF, therefore, peripheral tissues may influence the density and distribution of their sympathetic and sensory innervation.

β-NGF has been described in the prostates of rodents, where it may be present in high concentration, and is localised by immunohistochemistry to prostate epithelium [17]. In the human gland β-NGF protein and mRNA have been demonstrated [25, 27]. Graham et al. [14] localised β-NGF immunoreactivity to prostate stromal cells. More recent results from this laboratory localise β-NGF to human prostate epithelium, in keeping with its localisation in other mammals [27].

Analysis of cellular binding of  $\beta$ -NGF reveals two populations of binding sites: high-affinity sites ( $K_d = 10^{-11}$  M) and low-affinity sites ( $K_d = 10^{-9}$  M) [34]. Two receptor molecules underlying these two groups of binding sites have been described. Klein et al. demonstrated that p140<sup>trkA</sup> (for tropomyosin receptor kinase) acted as a  $\beta$ -NGF receptor with high-affinity binding ( $K_d = 10^{-11}$  M).

The other β-NGF binding protein – p75<sup>LNGFR</sup> – was described earlier than p140<sup>trkA</sup>, in 1986, by Chao et al. [7]. The protein is much more widely distributed than p140<sup>trkA</sup> both in the central nervous system and in the periphery, where, in addition to sensory and sympathetic neurons, Schwann cells and other neural supporting cells express the protein [6, 31, 32]. In addition it was initially unclear that p75<sup>LNGFR</sup> had any capacity for intracellular signalling – cells expressing p140<sup>trkA</sup> in the absence of p75<sup>LNGFR</sup> continued to respond to β-NGF stimulation [9, 20]. Such findings lead to a relative neglect of the possible role of p75<sup>LNGFR</sup> as a β-NGF receptor; some authors proposed that p75<sup>LNGFR</sup> might have a role in collaborative β-NGF binding with p140<sup>trkA</sup> [18]. More recently, however, actions of β-NGF that are purely p75<sup>LNGFR</sup>-mediated have been demonstrated. These have become clear by analogy with other members of a p75<sup>LNGFR</sup> receptor family which cause apoptotic cell death; all such receptors bear an intracellular "cell-death

domain" [4].  $\beta$ -NGF stimulation prevents p75<sup>LNGFR</sup>-mediated apoptosis of p75<sup>LNGFR</sup> transfected cells [30]. That is, the expression of  $\beta$ -NGF by peripheral tissues prevents constitutive cell death of p75<sup>LNGFR</sup>-bearing cells.

The expression of  $\beta\text{-NGF}$  receptors in the prostate may, therefore, be of relevance to the growth and maintenance of the adrenergic innervation of the gland. As it is clear that  $\alpha\text{-adrenoreceptor-mediated}$  prostatic smooth muscle tone is responsible for 40% of urethral resistance in bladder outflow obstruction in males [12], the nature and distribution of  $\beta\text{-NGF}$  binding sites in the human prostate are of interest. In this study we sought to demonstrate specific NGF binding to human prostate tissue microsomes in a radioligand binding assay, and to localise human p75^LNGFR in human prostate tissue by immunohistochemistry.

#### **Materials and methods**

Tissues and cells

Benign prostatic hyperplasia (BPH) and prostate cancer transurethral resection (TURP) "chips" were obtained. Tissue was snapfrozen in liquid nitrogen and stored at -70 °C until analysis. Randomly selected prostate chips from each prostate adenocarcinoma specimen were evaluated to confirm the diagnosis histopathologically.

The rat phaeochromocytoma cell line PC-12 (European Collection of Animal Cell Cultures, Porton Down, Salisbury, Wiltshire, UK) bears abundant NGF receptors [11] and provided positive controls. These cells were grown in suspension to turbidity in RPMI 1640 medium with 10% horse serum, 5% fetal calf serum, 50 U penicillin/ml, 50 mg streptomycin/ml, 2.5 μg amphotericin/ml and 2 mM L-glutamine (Gibco Life Technologies, Paisley, Renfrewshire, UK) at 37 °C in humidified air with 5% CO<sub>2</sub>.

#### Preparation of prostatic and PC-12 microsomes

Two grams of prostate tissue were pulverised (Mikrodismembrator, Braun Medical, Aylesbury, UK) and homogenised in 0.25 mM sucrose buffer (0.25 mM sucrose, 10 mM TRIS, 1 mM EDTA, 1 mM EGTA, 0.05 mM phenylmethylsulphonyl fluoride (PMSF) and 0.25 μg/ml of aprotonin; Rotary homogeniser, Ystrall, Dottingen, Germany.) After centrifugation at 600 g and 13 000 g at 4 °C for 30 min, the microsomal fraction was pelleted by centrifugation at 100 000 g for 40 min at 4 °C and resuspended in 10 mM TRIS/0.9% (w/v) NaCl (pH 7.4) [13].

To test whether endogenous NGF activity was interfering with radiolabelled NGF binding, microsomes were treated with MgCl<sub>2</sub>. The microsomal pellet was resuspended in 4 M magnesium chloride, incubated at room temperature for 10 min and centrifuged (100 000 g, 40 min), before suspension in 0.25 mM sucrose buffer, ultracentrifugation and suspension in 10 mM TRIS/0.9% (w/v) NaCl (pH 7.4) [24].

PC-12 cells were pelleted from culture (1000 g, 10 min) and resuspended in phosphate-buffered saline. The mixture was added to 1 mM TRIS with 0.05 mM PMSF and 0.25 µg/ml aprotonin. The mixture was centrifuged [3000 g, 15 min, 4 °C). The pellets were dispersed in 0.25 mM sucrose homogenisation buffer and recentrifuged. The supernatant was ultracentrifuged (100 000 g, 40 min, 4 °C). The pellets were dispersed in 500 µl of radioligand binding assay buffer [36].

The protein content of microsomal preparations was measured by Bradford assay [5]. Radioligand binding assay

The reaction mixture was TRIS 10 mM, 0.9% (w/v) NaCl, 1% borine serum albumin (BSA), 1 mM PMSF, 0.25 μg/ml aprotonin, 200 000 cpm of <sup>125</sup>I-2.5S mouse NGF (mNGF) (i.e. 1.2–1.6 ng, at 1500 Ci/mmol, NEN Research Products, Du Pont, Stevenage, UK), microsomes at 0.1 mg protein/ml and 3000, 1500, 750, 562.5, 375, 187.5 or 0 ng/ml of unlabelled 2.5S mNGF (Boehringer Mannheim Biochemica, Lewes, Sussex, UK). The reaction volume was 100 μl (10 μg microsomal protein) [13]. PC-12 mixtures were incubated at 37 °C for 1 h. Prostate assays were incubated at 4 °C or 37 °C for 30 min to 21 h.

Bound and free hormone were separated by the addition of 1 ml of 0.9% (w/v) NaCl to each tube and centrifugation (13 000 g, 4 °C, 5 min). The supernatant was aspirated and the tip of the tube containing the microsomal pellet was excised and its gamma-emissions counted ("Crystal II", Canberra-Packard, Pangbourne, Berks., UK). Assays were carried out in duplicate and the mean of two samples calculated. A Scatchard plot was drawn from the displacement data from PC-12 microsomal preparations [33].

## Immunohistochemistry for p75<sup>LNGFR</sup>

Cryostat sections 7–8 µm thick were cut from TURP chips on to poly-L-lysine coated microscope slides (Sigma, Poole, UK). PC-12 cells were pelleted by centrifugation at 1000 g for 5 min and smeared on a poly-L-lysine coated slide. They were washed in tap water. Frozen sections and PC-12 smears were fixed in absolute methanol at 4 °C for 3 min.

In initial p75<sup>LNGFR</sup> staining a 5% albumin blocking solution

In initial p75<sup>LNGFR</sup> staining a 5% albumin blocking solution was used to replicate Graham et al.'s technique [14]. Sections were incubated in: 5% BSA in TRIS-buffered saline (pH 7.6, TBS) for 30 min; mouse monoclonal anti-human nerve growth factor-receptor (Boehringer Mannheim Biochemica, Lewes, UK) diluted 1:10 in TBS with 3.5% BSA and 0.1% sodium azide (TBS/BSA/azide), 30 min; TBS wash; prediluted biotinylated goat anti-mouse IgG antibody ("Immumark Universal" reagent kit, ICN Flow laboratories, Costa Mesa, Calif, USA), 30 min; TBS wash; prediluted streptavidin-linked alkaline phosphatase ("Immumark Universal", ICN Flow Laboratories), 30 min; TBS wash; fuchsin chromogen solution ("New Fuchsin", Dako, High Wycombe, Bucks, UK) 15 min; tap water (pH 9.0), 2 min; Mayer's haematoxylin, 1 min; aqueous saturated lithium carbonate, 30 s. The slides were air-dried and mounted with DPX medium and coverslips. Sections were examined for positive (red) staining for p75<sup>LNGFR</sup> at ×40, ×100 and ×400 magnification.

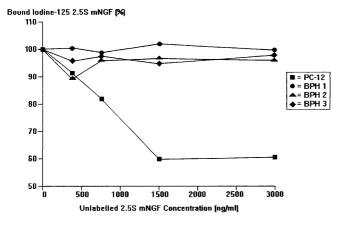
When radioligand binding assays failed to demonstrate LNGFR activity (below), the results of immunohistochemistry were re-examined. Immunohistochemistry was repeated, but 20% normal goat serum (Scottish Antibody Production Unit, Carluke, Lanarkshire, UK) in TBS/BSA/azide was used as a blocking serum in place of 5% BSA in TBS. The normal goat serum would be expected to block more fully any non-specific binding of goat secondary antibody to tissue antigens [1]. The protocol of immunohistochemistry was otherwise as above and specifically the same preparation of primary anti-p75<sup>LNGFR</sup> was used.

#### Results

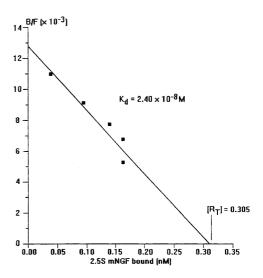
#### Radioligand binding assay

The displacement of <sup>125</sup>I-2.5S mNGF from PC-12 microsomes by the addition of increasing amounts of unlabelled 2.5S mNGF – indicating the presence of specific NGF binding activity – was demonstrated at 37 °C

(Fig. 1). In the case of PC-12 microsomes, background non-specific binding of 60.5% of total counts was seen. A Scatchard plot, drawn from the full range of unlabelled 2.5S mNGF concentrations, showed a  $K_{\rm d}$  of  $2.40 \times 10^{-8}$  nM. The total number of receptors was 30.5 nmol/mg protein (Fig. 2). In the case of microsomes prepared from BPH tissue, no displacement of  $^{125}\text{I}$ -2.5S mNGF was demonstrated under these conditions (Fig. 1). Nine BPH specimens were examined but specific 2.5S mouse NGF binding was not demonstrated.


Six BPH microsomal samples were assayed for hormone binding at 4 °C. No <sup>125</sup>I-2.5S mNGF displacement was shown with up to 3000 ng/ml of unlabelled 2.5S mNGF after incubations of 30 min and 1, 2, 4, 8 and 21 h. Equally, there was no evidence of specific NGF binding after endogenous NGF activity in BPH microsome preparations was abolished by previous treatment of microsomes with MgCl<sub>2</sub> (not shown).

In total, therefore, 20 BPH specimens were examined without any evidence of specific 2.5S-NGF being demonstrated.


## p75<sup>LNGFR</sup> immunohistochemistry

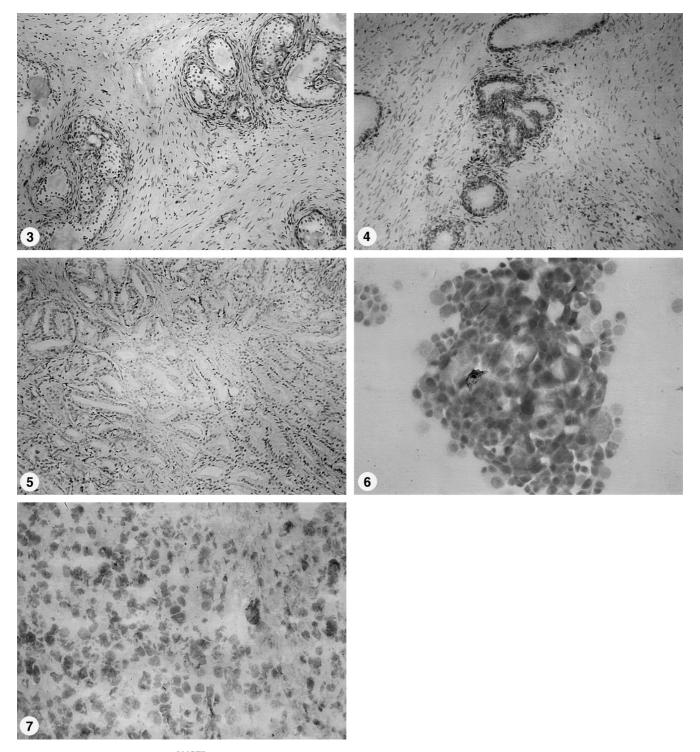
Immunohistochemistry was carried out on 15 samples each of prostate cancer and BPH tissues. p75<sup>LNGFR</sup> immunohistochemistry with 5% BSA as the blocking solution showed profuse staining of the basal epithelial layer. There was little staining in the prostate stroma and the secretory epithelial layer did not stain [Fig. 3].

In the light of the absence of demonstrable  $\beta$ -NGF receptors in ligand binding assays, this finding was reviewed. When 20% goat serum was used as the blocking solution in immunohistochemistry, staining of the prostate epithelium was lost. Figures 4 and 5 show BPH



**Fig. 1** Microsomal protein (0.1 mg/mL) was incubated with 200 000 cpm <sup>125</sup>I-2.5S mouse nerve growth factor (mNGF) in the presence of increasing unlabelled 2.5S mNGF concentrations and bound counts measured. Excess unlabelled 2.5S mNGF displaced <sup>125</sup>I-2.5S mNGF from PC-12 microsomes but not from benign prostatic hypertrophy (BPH) microsomes (three specimens shown). The background of non-specific binding in the case of PC-12 cells (60.5%) is comparable to that described elsewhere [31]




**Fig. 2** Scatchard plot of the binding of <sup>125</sup>I-2.5S mNGF to PC-12 microsomes. Assay conditions were as in Fig. 1 and are further detailed in the text

and prostate cancer tissues stained in this way. The PC-12 positive control cells continued to stain for p75<sup>LNGFR</sup> after goat serum blocking (Fig. 6). In spite of the lack of staining in the prostate epithelium, tiny areas (5–8 μm diameter) of stromal tissue – not related to cellular nuclei – stained positively for p75<sup>LNGFR</sup>. Only 17 such areas were identified in a total of 93 tissue sections examined (Fig. 7). Such areas were noted both in BPH and prostate carcinoma tissue, and indeed in areas of BPH coexisting on sections bearing prostate carcinoma. No such staining was seen in negative control sections blocked with goat serum but omitting the primary anti-p75<sup>LNGFR</sup> antibody.

#### **Discussion**

p75<sup>LNGFR</sup> is a plasma membrane receptor and was, therefore, sought in microsomal preparations that are simply prepared and allow enrichment of the plasmalemma fraction as mitochondrial and nuclear membranes are excluded. The demonstration of specific NGF binding to PC-12 microsomes was straightforward. An initial experiment not reported here showed NGF binding to whole PC-12 cells at 37 °C for 1 h. These conditions were used for microsomal binding, therefore, and are thought to explain the high  $K_d$  found  $(10^{-8} \text{ M})$ ; other authors have found  $K_d$  values in the region of 10<sup>-9</sup> M with microsomal preparations at 4 °C. Here, background non-specific binding of 60.5% of total counts to PC-12 microsomes was seen. Other authors have described non-specific backgrounds of around 50% for LNGFR assays on PC-12 membrane preparations

Specific binding of NGF to BPH microsomes was not demonstrated, in spite of the use of a variety of conditions and the abolition of any endogenous NGF activity.



**Fig. 3** BPH tissue stained for p75<sup>LNGFR</sup> using a blocking solution of 5% borine serum albumin (BSA) (original magnification  $\times$  32). The basal layer of prostate epithelium is positively stained while the prostate stroma and luminal epithelium is unstained

**Fig. 4** BPH tissue stained for p75<sup>LNGFR</sup> using a blocking solution of 20% goat serum (original magnification  $\times$  32.) Neither any of the glands in the middle of the field, nor the surrounding stroma, has stained for p75<sup>LNGFR</sup>

**Fig. 5** Well-differentiated prostate adenocarcinoma tissue stained for p75<sup>LNGFR</sup> with the 20% goat blocking serum. No malignant gland,

nor the small amount of intervening stroma, has stained positively for the receptor (original magnification  $\times$  32)

**Fig. 6** A smear of PC-12 cells stained for p75<sup>LNGFR</sup> after blocking with 20% goat serum as in Figs. 4 and 5. Positive staining is dark. The cytoplasm of the PC-12 cells is clearly stained (original magnification  $\times$  80)

**Fig. 7** Poorly differentiated prostate adenocarcinoma tissue stained as Figs. 4–6 (original magnification  $\times$  128). Punctate and fibrillary p75<sup>LNGFR</sup> staining is surrounded by adenocarcinoma cells

In the light of the results of our initial p75<sup>LNGFR</sup> staining, and those of other authors, this was a surprising result. Using albumin blocking solutions, immunohistochemistry reported here and by Graham et al. [14] suggests the presence of profuse p75<sup>LNGFR</sup> in prostate epithelium. MacGrogan et al. [25] report similar staining in the human prostate but the exact protocol of immunohistochemistry they used is not detailed.

When immunohistochemistry was repeated using a blocking serum derived from the species in which the secondary antibody was raised, the distribution of staining found was more consistent with ligand-binding results. That is, in the presence of specific staining of positive control cells, positive staining of benign hyperplastic and malignant prostate epithelium was lost in the 30 specimens examined. The only staining that persisted was in very small and sparse areas of prostate stroma where staining was not obviously related to prostate stromal cells. It is believed that these areas represent staining of p75<sup>LNGFR</sup> in sympathetic or sensory neural processes, where p75<sup>LNGFR</sup> activity is well described [22]. The infrequency of these areas, and hence the low numbers of p75<sup>LNGFR</sup> molecules present, is consistent with the failure of radioligand binding to demonstrate LNGFR activity. It should be stressed that the same primary antibody preparation was used in both immunohistochemistry techniques here and that this was the same antibody preparation, from the same manufacturer, as that used by Graham et al. [14].

Djakiew and co-workers have reported studies of low- and high-affinity NGF receptors in the human prostate. Their immunohistochemical studies of human prostate tissue, whereby p75<sup>LNGFR</sup> localised to epithelial cells, have already been cited [14]. Djakiew et al. [10] have also described an increase in prostate epithelial growth in vitro in response to NGF, and have stained primary cultures of normal prostate epithelial cells and PC-3, DU145, LNCaP and TSU-pr1 prostate cancer cell lines. They found that normal epithelial cells stained positively for p75<sup>LNGFR</sup> while the malignant cell lines did not. In immunoblotting, primary cultures of normal epithelial cells expressed p75<sup>LNGFR</sup> while BPH and adenocarcinoma cells showed reduced or absent expression [29]. More recently they have demonstrated p140<sup>trkA</sup> immunohistochemical staining in epithelium of hyperplastic, adenocarcinomatous and normal prostate tissue. Malignant TSU-pr1 cells in culture showed high-affinity NGF binding only in ligand binding assay, while primary cultures of normal cells showed high- and lowaffinity binding [28]. In addition to these immunochemical results Djakiew's group has been able to demonstrate specific binding of β-NGF in prostate cells, in contrast to the results reported here [28, 29]. It should be noted, however, that specific β-NGF binding was only demonstrated in primary cultures of prostatic cells rather than in membrane preparations from prostatic tissue as reported here. There is little doubt that the phenotype of prostate cells alters significantly in primary culture, and we suspect that this explains the disparity in these results [16]. On the basis of their results, Djakiew et al. have stressed the possibility that NGF or NGF-like proteins in the human prostate are stromally produced paracrine determinants of epithelial growth.

The results reported here would support the suggestion that p75<sup>LNGFR</sup> expression is low in BPH – it was not possible to demonstrate specific NGF binding in BPH tissue. These immunohistochemistry results, however, would suggest a different interpretation of the localisation of p75<sup>LNGFR</sup> from that previously reported. In association with the epithelial localisation of NGF reported from this laboratory [27] these data would suggest that  $\beta\text{-NGF}$  in BPH tissue in the human is an epithelial product whose receptors are localised to putative nerve endings in the prostate stroma.

In this view,  $\beta$ -NGF in the prostate would have a role similar to that in other peripheral tissues – namely the control of the density and distribution of sympathetic innervation [15, 23]. Recently it has been shown not only that  $\beta$ -NGF has the capacity to rescue susceptible nerve fibres from naturally occurring cell death in peri-natal life [2], but also that it can promote the new growth of adrenergic neurones in the adult [35]. Further it is clear that the catecholamines released by sympathetic nerves themselves act in turn as trophic factors for smooth muscle cells [3, 19].

Therefore it can be postulated that  $\beta$ -NGF production by growing hyperplastic prostatic epithelium may be a means whereby the sympathetic innervation and the smooth muscle elements of the mature BPH nodule are recruited [26].

**Acknowledgements** A. P. was supported by grants from the Western General Hospital Kidney Unit Appeal and from the Melville Trust for the Care and Cure of Cancer. Thanks are due to Dr. J. St. J. Thomas, Department of Pathology, Western General Hospital, for checking the p75<sup>LNGFR</sup> staining, and for routine pathology. Mr. L. Brett gave invaluable advice and access to the equipment used in immunohistochemistry. This work was, in part, carried out under the supervision of the late Prof. Geoffrey D. Chisholm, CBE, ChM, PPRCSEd.

#### References

- Bancroft JD, Cook HC (1994) Immunocytochemistry. In: Bancroft JD, Cook HC (eds) Manual of histological techniques and their diagnostic applications, 2nd edn. Churchill Livingstone, Edinburgh, p 263
- 2. Barde Y-A (1989) Trophic factors and neuronal survival. Neuron 2: 1525
- Blaes N, Boissel J (1983) Growth stimulating effects of catecholamines on rat aortic smooth muscle cells in culture. J Cell Physiol 116: 167
- Bothwell M (1996) p75<sup>NTR</sup>: a receptor after all. Science 272: 506
- 5. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248
- Carter BD, Kaltschmidt C, Kaltschmidt B, Offenhäuser N, Böhm-Matthaei R, Baeuerle PA, Barde Y-A (1996) Selective activation of NF-kB by nerve growth factor through the neurotrophin receptor p75. Science 272: 542

- Chao M, Bothwell MA, Ross AH, Koprowski H, Lanahan AA, Buck CR, Sehgal AA (1986) Gene transfer and molecular cloning of the human NGF receptor. Science 232: 518
- Cohen S, Levi-Montalcini R (1957) Purification and properties of a nerve growth-promoting factor isolated from mouse sarcoma 180. Cancer Res 17: 15
- Cordon-Cardo C, Tapley P, Jing S, Nanduri V, O'Rourke E, Lamballe F, Kovary K, Klein R, Jones KR, Reichardt LF, Barbacid M (1991) The *trk* tyrosine protein kinase mediates the mitogenic properties of nerve growth factor and neurotrophin-3. Cell 66: 173
- 10. Djakiew D, Delsite R, Pflug B, Wrathall J, Lynch JH, Onoda M (1991) Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate. Cancer Res 51: 3304
- Finkelman RD, Lau K-HW, Abraham SM, Baylink DJ (1992) Evidence for a lack of functional receptors for nerve growth factor (NGF) in chick bone cells in vitro. Mol Cell Biochem 115: 129
- Furuya S, Kumamoto Y, Yokoyama E, Tsukamoto T, Izumi T, Abiko Y (1982) Alpha-adrenergic activity and urethral pressure in prostatic zone in benign prostatic hypertrophy. J Urol 128: 836
- Gammeltoft S (1990) Peptide hormone receptors. In: Siddle K, Hutton JC (eds) Peptide hormone action: a practical approach. IRL Press, Oxford, p 1
- Graham CW, Lynch JH, Djakiew D (1992) Distribution of nerve growth factor-like protein and nerve growth factor receptor in human benign prostatic hyperplasia and prostatic adenocarcinoma. J Urol 147: 1444
- Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal-root neurites toward nerve growth factor. J Cell Biol 87: 546
- Habib FK, Grant ES (1996) Molecular and cellular biology of the prostate: is it clinically relevant? Br J Urol 78: 546
- Harper GP, Thoenen H (1980) The distribution of nerve growth factor in the male sex organs of mammals. J Neurochem 34: 893
- Hempstead BL, Martin-Zanca D, Kaplan DR, Parada LF, Chao MV (1991) High-affinity NGF binding requires coexpression of the *trk* proto-oncogene and the low-affinity NGF receptor. Nature 350: 678
- Hirst SJ, Twort CHC (1992) The proliferative response of airway smooth muscle. Clin Exp Allergy 22: 907
- 20. Ibáñez CF, Ebendal T, Barbany G, Murray-Rust J, Blundell TL, Persson H (1992) Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the *trk* gene product. Cell 69: 329
- Klein R, Jing SQ, Nanduri V, O'Rourke E, Barbacid M (1991)
   The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65: 189

- 22. Koliatsos VE, Price DL (1993) Retrograde axonal transport: applications in trophic factor research. In: Boulton AA, Baker GB, Hefti F (eds) Neurotrophic factors. Humana Press, Totowa, NJ, p 247
- 23. Korsching S, Thoenen H (1983) Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci USA 80: 3513
- 24. Leake A, Chisholm GD, Habib FK (1983) Characterization of the prolactin receptor in human prostate. J Endocrinol 99: 321
- MacGrogan D, Saint-Andre JP, Dicou E (1992) Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem 59: 1381
- McNeal JE (1978) Origin and evolution of benign prostatic enlargement. Invest Urol 15: 340
- 27. Paul AB, Grant ES, Habib FK (1996) The expression and localisation of β-nerve growth factor (β-NGF) in benign and malignant prostate tissue: relationship to neuroendocrine differentiation. Br J Cancer 74: 1990
- Pflug B, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136: 262
- 29. Pflug B, Onoda M, Lynch JH, Djakiew D (1992) Reduced expression of the low affinity nerve growth factor receptor in benign and malignant human prostate tissue and loss of expression in four human metastatic prostate tumor cell lines. Cancer Res 52: 5403
- Rabizadeh S, Oh J, Zhong L-T, Yang J, Bitler CM, Butcher LL, Bredesen DE (1993) Induction of apoptosis by the lowaffinity NGF receptor. Science 261: 345
- Richardson PM, Verge VMK, Riopelle RJ (1993) Characterisation and localisation of receptors for neurotrophic factors.
   In: Boulton AA, Baker GB, Hefti F (eds) Neurotrophic factors. Humana Press, Totowa, NJ, p 213
- 32. Ross AH, Grob P, Bothwell M, Elder DE, Ernst CS, Marano N, Ghrist BFD, Slemp CC, Herlyn M, Atkinson B, Koprowski H (1984) Characterization of nerve growth factor receptor in neural crest tumors using monoclonal antibodies. Proc Natl Acad Sci USA 81: 6681
- 33. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann N Y Acad Sci 51: 660
- 34. Sutter A, Riopelle RJ, Harris-Warrick RM, Shooter EM (1979) Nerve growth factor receptors: characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem 254: 5972
- 35. Thrasivoulou C, Cowen T (1995) Regulation of rat sympathetic nerve density by target tissues and NGF in maturity and old age. Eur J Neurosci 7: 381
- Treadway JL, Pessin JE (1990) Receptor characterization. In: Siddle K, Hutton JC (eds) Peptide hormone action: a practical approach. IRL Press, Oxford, p 43